TEST PAPER NO. 08

TOPIC : D AND F BLOCK ELEMENT

M.M.	50		TIME:	3 HRS.
Name	of Student	Roll No.		

Q.NO. 1-10 carries 1 mark, 11-20 2 marks, 21-25 carries 3 marks, 26 carries 5 marks.

- Why are Mn²⁺ compounds are more stable than Fe³⁺ towards oxidation to their +3 state?
- 2. What are the different oxidation state exhibited by Lanthanoids?
- 3. Compare the stability of +2 oxidation state for the elements of first series.
- 4. Which metal in the first transition metals exhibits +1 oxidation state most frequently and why?
- 5. Name a lathanoid series element exhibiting +4 oxidation state?
- 6. Actinoid contraction is greater from element to element than lanthanoid contraction. Why?
- 7. What are misch metal?
- 8. Explain why Cu⁺ ion is not stable in aqueous solutions?
- 9. Calculate the spin only magnetic moment of M^{2+} (aq) ion (Z = 27)
- 10. Which is the stronger reducing agent and why Cr^{2+} or Fe^{2+} ?
- 11. What is disproportionation reaction? Explain with two example.
- a. How would you account for the increasing oxidising power VO₂⁺ < CrO₇⁻² < MnO₄⁻
 b. How would you account for irregular variation of IE in Ist transition series.
- 13. Why transition element show magnetic behaviour. Calculate the magnetic moment of a divalent ion in aqueous solution if its Z = 25.
- 14. What is lanthanoid contraction. Explain its consequences. (any two)
- 15 WhY;
 - a. Transition element have high enthalpy of atomisation
 - b. Transition element show variable oxidation state.
- 16 Why:

b.

- a. Transition element have irregular variation in atomic radii along the series.
 - Zn, Cd and Hg are not considered as transition element.

Give example and suggest reasons for the following features of the transition element:

a. The lowest oxide of transition metal is basic, the highest is amphoteric/acidic

b. The highest oxidation state is exhibited in oxoanions.

18. Why

17.

a. A transition metall exhibits highest oxidation state in oxides and fluorides.

b. +2 state becomes more and more stable in the first half of the first row transition elements with increasing atomic number.

- 19. Write the ionic equaiton for action of acidified potasium dichromate on: a. iron(II) solution b. H_2S
- 20. Explain the :
 - a. For the Ist row transition metals the value of E^o are irregular.
 - b. Cr^{4+} reducing and Mn^{3+} oxidising when both have d⁴ configuration.
- 21. Write general electronic configuration of d and f block element
 - Why Cr and Cu have anomalous configuration.
- 22. Write:
 - a. Chromyl Chloride Test Reaction
 - b. Effect of change of pH on Potasium Dichromate
 - c. Action of neutral KmnO4 on thiosulfate
- 23. Compare the chemistry of actinoids with that of the lanthanoids with special reference to:
 - a. Electronic configuration b. Oxidation State
 - c. Atomic and ionic sizes d. Chemical reactivitiy
 - Why: Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidised.
- 24 Explain $K_2Cr_2O_7$ under following head:
 - a. Preparation
 - Action of KmnO₄ (acidified) on Ferrous Sulfate and Potassium Iodide.
 Write balanced chemical reaction.
- 25 Explain KMnO4 under following head:
 - a. Preparation
 - Action of KmnO₄ (acidified) on Ferrous Sulfate and Potassium Iodide.
 Write balanced chemical reaction.
 - c. Structure and 2 uses.
- 26 Explain the following property of transition element:
 - a Coloured compound
 - b. Interstitial compound
 - c. Complex compound
 - d. Catalyst
 - e. Alloy formation.